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Receding horizon control
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Receding horizon strategy introduces feedback.
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Why is This a Good Idea?

All physical systems have constraints.

• Physical constraints, e.g. actuator limits

• Performance constraints, e.g. overshoot

• Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Classical control methods:

• No knowledge of constraints

• Set point sufficiently far from constraints

• Suboptimal plant operation

Predictive control:

• Constraints included in the design

• Set point optimal

• Efficient plant operation

Optimal Operation and Constraints

PSfrag replacements

constraint

set point
time

ou
tp

ut Classical Control
No knowledge of constraints
Set point far from constraints
Suboptimal plant operation

PSfrag replacements

constraint

set point
time

ou
tp

ut Predictive Control
Constraints included in design
Set point closer to optimal
Improved plant operation

4F3 Predictive Control - Lecture 1 – p.3/11Optimal Control of Unconstrained Systems 2–4 Model Predictive Control ME-425



MPC: Mathematical formulation

u�(x) := argmin xTNQf xN +

N�1�

i=0

xTi Qxi + uTi Rui

���� x0 = x ���������
�

xi+1 = Axi + Bui ������������

Cxi +Dui � b ��
����

��

R ⇥ 0, Q ⇥ 0 ��������
�����
�	��

Problem is defined by

• Objective that is minimized,
e.g., distance from origin, sum of squared/absolute errors, economic,...

• Internal system model to predict system behavior
e.g., linear, nonlinear, single-/multi-variable, ...

• Constraints that have to be satisfied
e.g., on inputs, outputs, states, linear, quadratic,...

Optimal Control of Unconstrained Systems 2–5 Model Predictive Control ME-425



MPC: Mathematical formulation

Plant


plant state x 

Output y 

u�(x) = {u�0, . . . , u�N�1}

u�(x) := argmin xTNQf xN +

N�1�

i=0

xTi Qxi + uTi Rui

���� x0 = x ���������
�

xi+1 = Axi + Bui ������������

Cxi +Dui � b ��
����

��

R ⇥ 0, Q ⇥ 0 ��������
�����
�	��

At each sample time:

• Measure /estimate current state

• Find the optimal input sequence for the entire planning window N

• Implement only the first control action
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Summary

• Optimize over future possible trajectories of the system to:
1. Satisfy constraints (now and always)
2. Stabilize the system
3. Optimize “performance”
In that order!

• Re-optimizing when new measurements are obtained introduces feedback
The model is wrong
Unknown disturbances will act in the future
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Modeling for MPC: Review

Models in MPC are (usually): Discrete-time, time invariant, state-space and

Nonlinear x+ = f (x , u) y = h(x , u)

Linear x+ = Ax + Bu y = Cx + Du

Notes:

• Assume state-measurement ⇒ often drop the y = h(x , u).

• Old MPC approaches were based on step response models. Still common in
industry, but theoretically a very bad idea.

• Frequency concepts (Bode, Nyquist, Laplace, etc) and controllers based on
these (H∞, lead/lag filters, etc) are not used in MPC because constraints
make all systems nonlinear.

• Throughout the course, we will assume a discrete-time, state-space model
provided
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Lyapunov Functions

Idea: System is stable, if total ‘energy’ is decreasing over time. Lyapunov
function is a system theoretic generalization of ‘energy’.

Lyapunov function

A continuous1 function V : Rn → R+ is called a (asymptotic) Lyapunov
function for the system x+ = f (x), if

• ‖x‖ → ∞⇒ V (x)→∞
• V (0) = 0 and V (x) > 0 ∀x ∈ Rn\{0}
• V (f (x)) < V (x) ∀x ∈ Rn\{0}

We will often speak of a local Lyapunov function, in which these conditions
need only be satisfied in some region x ∈ X .

1This assumption can be relaxed by requiring an additional state dependent upper bound
on V (x) [Rawlings & Mayne, 2009].
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Lyapunov Functions for Stability
Theorem: Global Lyapunov Stability

If a system admits a (asymptotic) Lyapunov function, then the equilibrium
point at the origin is asymptotically stable.

Rough sketch of proof.

Consider a system x+ = f (x) with Lyapunov function V and initial state x0.

The resulting state sequence {x0, x1, x2, . . . } will have an associated sequence
{V (x0),V (x1),V (x2), . . . } which is:

• positive

• monotonically decreasing

Since the only point where V (x) = 0 is x = 0, we have that in the limit V (xi )
tends to zero, and therefore xi tends to the origin.
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Remarks on Lyapunov functions

• Finding a Lyapunov function (and proving that it is one!) is the challenge

• Find Lyapunov function for optimization-based controller??? No idea?!

• MPC: setup the problem so that the optimal value of the cost function is
always a Lyapunov function by design.

Will see a simple version of this today with LQR

• Stable linear systems: V (x) = xTPx is always a Lyapunov function
Find P by solving the Lyapunov equation for some Q > 0

ATPA− P = −Q

Matlab: P = dlyap(A,Q); Solves discrete-time Lyapunov equation
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Outline

1. Recap

• Receding Horizon Control

• Modeling for MPC

• Lyapunov Functions

2. Linear quadratic regulator

• Computation of LQR Controllers
• Stability of LQR Controllers

3. Summary of Exercise Session
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Linear Quadratic Regulator

x+ = Ax + Bu

Goal: Move from state x to the origin. (i.e., keep x ‘small’)

Consider N inputs into the future

u := {u0, . . . , uN−1}

Express the ‘cost’ of being in state x and applying input u with the function

l(x , u) := xTQx + uTRu

Cost of following a trajectory:

V (x0,u) =
N∑

i=0

xT
i Qxi + uT

i Rui

Assume: R � 0, Q � 0. Real, symmetric and positive (semi)definite.
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Motivation for LQR
Consider the system:

x+ = Ax + Bu y = Cx

and set Q = CTC , R = ρI . Minimize the cost

N∑

i=0

‖yi‖22 + ρ‖ui‖22

We’re minimizing the energy in the input and output signals.

Large ρ ⇒ small input energy, output weakly controlled
Small ρ ⇒ large input energy, output strongly controlled

Real motivation
• Works well in practice

• We can solve it (very common motivation in control!)

• Solution is simple, and easy to implement in embedded controller
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Receding Horizon Control

Compute optimal sequence over N-step horizon


System




Extract first input in 
sequence
_

\�

u�(x)

x+ = Ax + Bu

u�(x0) = {u0, . . . , uN�1}

u�(x0) := argmin

N�

i=0

xTi Qxi + uTi Rui

Z�[� xi+1 = Axi + Bui

For unconstrained systems, this is a constant linear controller
However, can extend this concept to much more complex systems (MPC)
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LQR Solution Methods
Two equivalent solution procedures:

Dynamic programming

Pros:
• Leads to elegant closed-form solution for LQR

• Provides a solution when N →∞

Cons:
• Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:
• Can extend to nonlinear, constrained systems with complex cost-functions

Cons:
• Finite-horizon only

• More computationally intense
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Principle of Optimality/Dynamic Programming

V ?(x0) := min
u

N∑

k=0

l(xk , uk) s.t. xk+1 = Axk + Buk

Consider problem with N = 2:

V ?(x0) = min
u0,u1,u2

l(x0, u0) + l(x1, u1) +

Fix x2 and this is a

function only of u2︷ ︸︸ ︷
l(x2, u2)

s.t. x1 = Ax0 + Bu0
x2 = Ax1 + Bu1

= min
u0,u1

l(x0, u0) + l(x1, u1) + V ?2 (Ax1 + Bu1)

s.t. x1 = Ax0 + Bu0

where:

V ?2 (x2) := min
u2

l(x2, u2)
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Principle of Optimality/Dynamic Programming

V ?(x0) = min
u0,u1

l(x0, u0) +

Fix x1 and this is

a function only of u1︷ ︸︸ ︷
l(x1, u1) + V ?2 (Ax1 + Bu1)

s.t. x1 = Ax0 + Bu0

= min
u0

l(x0, u0) + V ?1 (Ax0 + Bu0)

where:

V ?1 (x1) := min
u1

l(x1, u1) + V ?2 (Ax1 + Bu1)

Finally only u0 to minimize:

V ?(x0) = min
u0

l(x0, u0) + V ?1 (Ax0 + Bu0)

The value that minimizes this function u?0(x0) is our control input.
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Dynamic Programming

Procedure:

1. Start at step N and compute

V ?N(xN) := min
uN

l(xN , uN)

2. Iterate backwards for i = N − 1 . . . 0 (DP iteration)

V ?i (xi ) := min
ui

l(xi , ui ) + V ?i+1(Axi + Bui )

3. V ?(x0) := V ?0 (x0) and the optimal controller is the optimizer u?0(x0)

Requirements:
• Closed-form representation of the function V ?i (x)

• Ability to compute a DP iteration

Normally impossible. Some special cases (e.g., LQR).
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DP Solution of LQR

V ?(x0) := min
u

N∑

i=0

xi
TQxi + ui

TRui s.t. xi+1 = Axi + Bui

DP iteration:

V ?i (xi ) = min
ui

xi
TQxi + ui

TRui + V ?i+1(Axi + Bui )

for i = N − 1, . . . , 0.

We will show:

• V ?i (x) is quadratic (and therefore V ?(x) is)

• V ?i (x) is positive definite (and therefore V ?(x) is)

• Optimizer u?0(x) is linear
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Bellman Recursion
Assume Vi+1(xi+1) = xT

i+1Hi+1xi+1 is PSD.

DP iteration:

Vi (xi ) = min
ui

xi
TQxi + ui

TRui + Vi+1(Axi + Bui )

= min
ui

(
xT
i Qxi + uT

i Rui + (Axi + Bui )
THi+1(Axi + Bui )

)

Setting derivative to zero

2uT
i R + 2(Axi + Bui )

THi+1B = 0

uT
i (R + BTHi+1B) = −xT

i ATHi+1B

gives the optimal input as

u?i = Kixi Ki = −(R + BTHi+1B)−1BTHi+1A

and the optimal cost

V ?i (xi ) = xT
i (Q + KT

i RKi + (A + BKi )
THi+1(A + BKi ))xi

= xT
i Hixi
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Dynamic Programming

1. Start at step N and compute

V ?N(xN) := min
uN

xN
TQxN + uN

TRuN

= xN
TQxN

HN := Q

2. Iterate backwards for i = N − 1 . . . 0 (DP iteration)

V ?i (xi ) := min
ui

xi
TQxi + ui

TRui + V ?i+1(Axi + Bui )

u?i (xi ) = Kixi Ki = −(R + BTHi+1B)−1BTHi+1A

V ?i (xi ) = xT
i Hixi Hi := Q + KT

i RKi + (A + BKi )
THi+1(A + BKi )

3. V ?(x0) := V ?0 (x0) and the optimal controller is the optimizer u?0(x0)
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Finite-Horizon LQR Solution
Defines the optimal control law:

u?0(x) = K0x V ?0 (x) = xTH0x

• We only ever apply the controller u = K0x in a receding-horizon fashion.
• Ki ’s are for planning and are not used

• This is a simple, unconstrained, linear quadratic MPC problem

To make this work, we required:

• V ?i (x) to have a very nice form (quadratic)

• Ability to solve the DP iteration in closed form

This cannot be done for almost any other problem...
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LQR Solution Methods
Two equivalent solution procedures:

Dynamic programming

Pros:
• Leads to elegant closed-form solution for LQR

• Provides a solution when N →∞

Cons:
• Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:
• Can extend to nonlinear, constrained systems with complex cost-functions

Cons:
• Finite-horizon only

• More computationally intense
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Parametric Solution of Finite-Horizon LQR

V ?(x0) := min
u

N∑

i=0

xi
TQxi + ui

TRui s.t. xi+1 = Axi + Bui

Writing it out in full gives:

min
u




x1
x2
...

xN




T 


Q
Q

. . .
Q







x1
x2
...

xN


+




u0
u1
...

uN




T 


R
R

. . .
R







u0
u1
...

uN







−I 0 · · · · · · · · · 0
A −I 0 · · · · · · 0
0 A −I 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · · · · A −I







x1
x2
...

xN


+




B 0 · · · 0
0 B · · · 0
...

. . .
. . .

...
0 · · · · · · B







u0
u1
...

uN


 =




−A
0
...
0


 x0
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Parametric Solution of Finite-Horizon LQR
Simple formulation of the parametric least-squares problem:

V ?(x0) := min
u

xTQx+ uTRu s.t. Ax+ Bu = Cx0

where x =
[
xT
1 · · · xT

N

]T
, u =

[
uT
0 · · · uT

N−1
]T

,

A :=




−I 0 · · · · · · · · · 0
A −I 0 · · · · · · 0
0 A −I 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · · · · · · · A −I



B :=




B 0 · · · 0
0 B · · · 0
...

. . .
. . .

...
0 · · · · · · B


 C :=




−A
0
...
0




Q := diag(Q, . . . ,Q) R := diag(R, . . . ,R)
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LQR via Optimization

Solve least-squares optimization problem


System




Extract first input in 
sequence
_

\�

u�(x)

x+ = Ax + Bu

u�(x0) = {u0, . . . , uN�1}

u�(x0) := argmin xTQx+ uTRu
Z�[� Ax+ Bu = Cx0

Implicitly defines a controller κ(x) := u?0, and for each fixed x0, we can use a
standard constrained least-squares solver to compute it.
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Parametric Solution of Finite-Horizon LQR
Can re-write as a parametric optimization problem in the parameter x0:

V ?(x0) :=min
u

xTQx+ uTRu s.t. Ax+ Bu = Cx0

A is always invertible, so: x = −A−1Bu+A−1Cx0 = Fu+ Gx0

=min
u

(Fu+ Gx0)TQ(Fu+ Gx0) + uTRu

Take derivative and set to zero:

2uTR+ 2(Fu+ Gx0)TQF = 0

Solving gives:

u = Kx0 =




K0
...

KN−1


 x0 K = −(R+ FTQF )−1FTQG

This is a special kind of MPC, where we can write the solution in closed-form.

Explicit MPC lectures will show how to solve for some more general systems
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Comparison of Solution Methods

Dyanmic Programming
• Can compute the infinite-horizon solution

Infinite-horizon guaranteed to be stabilizing

Optimization
• Can only compute finite-horizon

May not be stable

• Solution complexity is quadratic in horizon length vs linear for DP

• Concept extends to nonlinear, constrained systems with non-quadratic cost
functions (i.e., MPC)

Both methods compute the same controller! (For a given horizon N <∞)

Next : Impact of horizon length and infinite-horizon solutions.
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Example - Impact of Horizon Length
Consider the lightly damped, stable system

G (s) :=
ω2

s2 + 2ζωs + ω2

where ω = 1, ζ = 0.01. We sample at 10Hz and set Q = I , R = 1.

Discrete-time state-space model:

x+ =

[
1.988 −0.998
1 0

]
x +

[
0.125
0

]
u

Closed-loop response
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Example: Short horizon N = 5

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

i = 0

x
1

x 2

Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N = 5
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Short horizon: Prediction and closed-loop response differ.
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Example: Long horizon N = 20
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Long horizon: Prediction and closed-loop match.
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Example: Long horizon N = 20
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Long horizon: Prediction and closed-loop match.
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Example: Long horizon N = 20
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Long horizon: Prediction and closed-loop match.
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Stability of Finite-Horizon Optimal Control Laws
Consider the system

G (s) =
ω2

s2 + 2ζωs + ω2

where ω = 0.1 and ζ = −1, which has been discretized at 1r/s.
(Note that this system is unstable)

Is the system x+ = (A + BKR,N)x
stable?

Where KR,N is the finite horizon LQR
controller with horizon N and weight R
(Q taken to be the identity)

Blue = stable, white = unstable
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Infinite-Horizon LQR
Show that the infinite-horizon controller is nominally stable:

V ?(x) := min
u

∞∑

i=0

xT
i Qxi + uT

i Rui

s.t. xi+1 = Axi + Bui

1. System must be controllable
Have input sequence that generates a bounded cost

2. Finite horizon LQR converges to static solution as N →∞
3. Infinite-horizon LQR is nominally stabilizing
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Solving Infinite-Horizon LQR

Consider the DP iteration:

V ?i (xi ) := min
ui

l(xi , ui ) + V ?i+1(Axi + Bui )

If V ?i (·) = V ?i+1(·), then V ?j (·) = V ?i+1(·) for all j ≤ i .

Therefore, if we can find a function V such that

V ?(x) := min
u

l(x , u) + V ?(Ax + Bu)

then V ?(·) = V ?∞(·).

This is called the Bellman equation
(The Hamilton-Jacobi-Bellman equation is the continuous time version)
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Solving Infinite-Horizon LQR

Fact: V ?(x) is quadratic, V ?(x) = xTPx for P � 02

Bellman equation:

V (x) = min
u

xTQx + uTRu + V (Ax + Bu)

xTPx = min
u

xTQx + uTRu + (Ax + Bu)TP(Ax + Bu)

minimizing gives u? = −(R + BTPB)−1BTPAx , giving

xTPx = xTQx + u?TRu? + (Ax + Bu?)TP(Ax + Bu?)

xTPx = xT (Q + ATPA− ATPB(R + BTPB)−1BTPA)x

2Reference here
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Infinite-Horizon LQR
This must hold for all x , so P must satisfy the discrete-time algebraic Riccati
equation (DARE)

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

The optimal input is the constant state feedback

u = Kx K = −(R + BTPB)−1BTPA
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Lyapunov Function for LQR-Controlled System
Lemma: Lyapunov function for LQR

The optimal value function V ?(x) = xTPx is a Lyapunov function for the
system x+ = (A + BK )x where K = −(R + BTPB)−1BTPA and P solves

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

for some Q � 0, R � 0.

Lyapunov function

A continuous function V : Rn → R+ is called a (asymptotic) Lyapunov
function for the system x+ = f (x), if

• ‖x‖ → ∞⇒ V (x)→∞
• V (0) = 0 and V (x) > 0 ∀x ∈ Rn\{0}
• V (f (x)) < V (x) ∀x ∈ Rn\{0}
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Lyapunov Function for LQR-Controlled System
Lemma: Lyapunov function for LQR

The optimal value function V ?(x) = xTPx is a Lyapunov function for the
system x+ = (A + BK )x where K = −(R + BTPB)−1BTPA and P solves

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

for some Q � 0, R � 0.

P � 0 gives the first two requirements.

V ?(x0) = x0TPx0 =
∞∑

i=0

xi
T (Q + KTRK )xi

Consider the value of V ?(x1)

V ?(x1) = V ?((A + BK )x0) =
∞∑

i=1

xi
T (Q + KTRK )xi

= V ?(x0)− x0T (Q + KTRK )x0 < V ?(x0)
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Optimal Control: Recap

Goal: Control law to minimize relative ‘energy’ of input and output signals

Why?
• Easy to describe objective / tune controller

• Simple to compute and implement

• Proven and effective

Why infinite-horizon?
• Stable

• Optimal solution (doesn’t usually matter)

In MPC we normally cannot have an infinite horizon because it results in an
infinite number of optimization variables.
Use ‘tricks’ to ‘simulate’ quasi-infinite horizon.
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Outline

1. Recap

• Receding Horizon Control

• Modeling for MPC

• Lyapunov Functions

2. Linear quadratic regulator

• Computation of LQR Controllers

• Stability of LQR Controllers

3. Summary of Exercise Session
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Exercise Session #1

Consider the discrete-time LTI system defined by

xi+1 = Axi + Bui yi = Cxi

with

A =

(
4/3 −2/3
1 0

)
B =

(
1
0

)
C =

(
−2/3
1

)
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Exercise Session #1

Exercises:

1. Computation of finite-horizon LQR control laws.
(Use either dynamic programming, or least-squares optimization)

2. Investigate relationship between stability and horizon length.
(Plot the predictions, and compare to the closed-loop trajectories.)

3. Compare your finite-horizon controller to Matlab’s infinite-horizon one.

You may find slides 2-30, 2-33, 2-34 and 2-36 useful.

The matlab command kron is useful if you choose the least-squares
optimization formulation.
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