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1. Recap

¢ Receding Horizon Control
¢ Modeling for MPC
e Lyapunov Functions
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Receding horizon control

Objectives Model Constraints

Reference Optimizer |  |nput Output
—> @ Plant ——
A
Measurements
Plan |
Plan |

Plan |
Time

Receding horizon strategy introduces feedback.
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Why is This a Good Idea?

All physical systems have constraints.

¢ Physical constraints, e.g. actuator limits
e Performance constraints, e.g. overshoot

o Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Classical control methods: constraint

e No knowledge of constraints

output

jet point

e Set point sufficiently far from constraints

e Suboptimal plant operation

Predictive control:

e Constraints included in the design

output

e Set point optimal

o Efficient plant operation

et point

time
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MPC: Mathematical formulation

N—1
u*(x) == argmin  x},Qexy + Z x! Qx; + u] Ru;
i=0
st. xp=x measurement
Xi+1 = Ax; + Bu; system model
Cxi+ Dui < b constraints
R>=0,Q>0 performance weights

Problem is defined by

e Objective that is minimized,

e.g., distance from origin, sum of squared/absolute errors, economic,...
e Internal system model to predict system behavior

e.g., linear, nonlinear, single-/multi-variable, ...
e Constraints that have to be satisfied

e.g., on inputs, outputs, states, linear, quadratic,...
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MPC: Mathematical formulation

N—-1
u*(x) := argmin x,\7,—Qfo + Z X,TQX,- + u,-TRu,-
i=0
st. xg=x measurement
Xi+1 = Ax; + Bu;  system model
Cx;+Dui < b constraints

R>0,Q>0 performance weights
u () =@} uh-1} plant state x
Plant ——> Qutput y

At each sample time:

e Measure /estimate current state

e Find the optimal input sequence for the entire planning window N
e Implement only the first control action
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Summary

e Optimize over future possible trajectories of the system to:

1. Satisfy constraints (now and always)
2. Stabilize the system
3. Optimize “performance”

In that order!

e Re-optimizing when new measurements are obtained introduces feedback

— The model is wrong
— Unknown disturbances will act in the future
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Modeling for MPC: Review

Models in MPC are (usually): Discrete-time, time invariant, state-space and

Nonlinear xT = f(x,u) y = h(x, u)
Linear xt = Ax + Bu y = Cx+ Du

Notes:

o Assume state-measurement = often drop the y = h(x, u).

e Old MPC approaches were based on step response models. Still common in
industry, but theoretically a very bad idea.

o Frequency concepts (Bode, Nyquist, Laplace, etc) and controllers based on
these (Mo, lead/lag filters, etc) are not used in MPC because constraints
make all systems nonlinear.

e Throughout the course, we will assume a discrete-time, state-space model
provided
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Lyapunov Functions

Idea: System is stable, if total ‘energy’ is decreasing over time. Lyapunov
function is a system theoretic generalization of ‘energy’.

Lyapunov function

A continuous! function V : R” — R, is called a (asymptotic) Lyapunov
function for the system x* = f(x), if

o |Ix|]| = 0= V(x) = o0

e V(0)=0 and V(x) >0 Vx e R"\{0}
e V(f(x)) < V(x) Vx € R"\{0}

We will often speak of a local Lyapunov function, in which these conditions
need only be satisfied in some region x € X.

1This assumption can be relaxed by requiring an additional state dependent upper bound
on V(x) [Rawlings & Mayne, 2009].
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Lyapunov Functions for Stability
Theorem: Global Lyapunov Stability

If a system admits a (asymptotic) Lyapunov function, then the equilibrium
point at the origin is asymptotically stable.

Rough sketch of proof.
Consider a system x* = f(x) with Lyapunov function V and initial state xo.

The resulting state sequence {xp, X1, X2, . .. } will have an associated sequence
{V(x), V(x1), V(x2), ...} which is:

e positive

e monotonically decreasing

Since the only point where V/(x) = 0 is x = 0, we have that in the limit V/(x;)
tends to zero, and therefore x; tends to the origin. I
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Remarks on Lyapunov functions
« Finding a Lyapunov function (and proving that it is one!) is the challenge
e Find Lyapunov function for optimization-based controller??? No idea?!

e MPC: setup the problem so that the optimal value of the cost function is
always a Lyapunov function by design.

— Will see a simple version of this today with LQR

o Stable linear systems: V/(x) = x" Px is always a Lyapunov function
Find P by solving the Lyapunov equation for some Q > 0

ATPA—P=-Q

Matlab: P = dlyap (A, Q); Solves discrete-time Lyapunov equation
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Outline

2. Linear quadratic regulator

e Computation of LQR Controllers
e Stability of LQR Controllers
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Linear Quadratic Regulator
= Ax + Bu

Goal: Move from state x to the origin. (i.e., keep x ‘small’)

Consider N inputs into the future

Express the ‘cost’ of being in state x and applying input v with the function
I(x,u) :=x"Qx+u"Ru

Cost of following a trajectory:

V(xp, u) ZXTQX,+U Ru;
i=0

Assume: R =0, Q > 0. Real, symmetric and positive (semi)definite.
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Motivation for LQR
Consider the system:
xt = Ax+ Bu y = Cx
andset Q=C'C, R= ol. Minimize the cost
N
Z 1yill3 + olluill3
i=0

We're minimizing the energy in the input and output signals.

Large p = small input energy, output weakly controlled
Small p = large input energy, output strongly controlled
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Motivation for LQR

Consider the system:
xt = Ax+ Bu y = Cx

andset Q=C'C, R= ol. Minimize the cost

N
Z 1yill5 + plluil3
i=0

We're minimizing the energy in the input and output signals.
Large p = small input energy, output weakly controlled

Small p = large input energy, output strongly controlled

Real motivation
e Works well in practice
e We can solve it (very common motivation in control!)

e Solution is simple, and easy to implement in embedded controller
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Receding Horizon Control

Compute optimal sequence over N-step horizon
N
N u*(xp) := argmin ZX,TQX,' + u,TRu,v
i=0
s.t. X1 = Ax; + Bu;

u”(x)

Extract first input in
sequence

u“(xo) = {wo. ..., un-1}

Uo

System
xt = Ax+ Bu

[

For unconstrained systems, this is a constant linear controller
However, can extend this concept to much more complex systems (MPC)
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LQR Solution Methods

Two equivalent solution procedures:

Dynamic programming

Pros:
e Leads to elegant closed-form solution for LQR

e Provides a solution when N — oo

Cons:
o Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:
e Can extend to nonlinear, constrained systems with complex cost-functions

Cons:
e Finite-horizon only

e More computationally intense
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Principle of Optimality/Dynamic Programming

N
V*i(x0) = muin Z I(Xk, uk)  s.t. Xkp1 = Axk + Bug
k=0

Consider problem with N = 2:

V*(Xo): min /(Xo,Uo)+/(X1,U1)+ /(XQ,UQ)

Uo, U1, U2
s.t. xy = Axg + Bug
X> = Axy + Buy
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Principle of Optimality/Dynamic Programming

N
V*i(x0) = muin Z I(Xk, uk)  s.t. Xkp1 = Axk + Bug
k=0

Consider problem with N = 2: Fix o and this is

function only of u»

V*(Xo): min /(Xo,Uo)+/(X1,U1)+ /(XQ,UQ)

Uo, U1, U2
s.t. xy = Axg + Bug
X> = Axy + Buy
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Principle of Optimality/Dynamic Programming

N
V*i(x0) = muin Z I(Xk, uk)  s.t. Xkp1 = Axk + Bug
k=0

Consider problem with N = 2: Fix o and this is

function only of u»

V*(Xo): min /(Xo,Uo)+/(X1,U1)+ /(XQ,UQ)

Up, Uy, U2
s.t. xy = Axg + Bug
X> = Axy + Buy
= Lr’nllp I(xo0, Uo) + I(x1, u1) + V5 (Axy + Buy)
0,U1
s.t. x1 = AXQ + BUO

where:

V3 (x2) :=min [(x, tn)
2
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Principle of Optimality/Dynamic Programming

V*(x) = DOMLQ (X0, Uo) + I(x1, 1) + V5 (Ax1 + Buy)

s.t. x1 = AXO + BUO
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Principle of Optimality/Dynamic Programming

Fix x1 and this is

a function only of u;

V*(x) = DOMLQ (X0, Uo) + I(x1, 1) + V5 (Ax1 + Buy)

s.t. x1 = AXO + BUO

Optimal Control of Unconstrained Systems 2-22 Model Predictive Control ME-425



Principle of Optimality/Dynamic Programming

Fix x1 and this is

a function only of u;

V*(x) = Domun1 (X0, Uo) + I(x1, 1) + V5 (Ax1 + Buy)

s.t. x1 = AXO + BUO

= min /(xo0, Ug) + Vi (Axo + Buo)
Uo

where:

Vi(x) = n}in I(x1, t1) + V5 (Axy + Bun)
1
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Principle of Optimality/Dynamic Programming

Fix x1 and this is

a function only of u;

V*(x) = Domun1 (X0, Uo) + I(x1, 1) + V5 (Ax1 + Buy)

s.t. x1 = AXO + BUO

= min /(xo0, Ug) + Vi (Axo + Buo)
Uo

where:

Vi(x) = n}in I(x1, t1) + V5 (Axy + Bun)
1

Finally only ug to minimize:

V*(x) = nzlin (X0, to) + V5 (Axo + Bup)
0

The value that minimizes this function uz(xp) is our control input.
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Dynamic Programming

Procedure:

1. Start at step N and compute
Viy(xn) == rmn I(Xn, un)
2. lterate backwards for i = N —1...0 (DP iteration)
Vi(x) = rryln I(xi, uj) + Vi1 (Axi + Buj)

3. V*(x0) := V§(x0) and the optimal controller is the optimizer uj(xp)

Requirements:
o Closed-form representation of the function V7 (x)

e Ability to compute a DP iteration

Normally impossible. Some special cases (e.g., LQR).
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DP Solution of LQR

N
V*(x0) :== min ZX,’TQX,‘ +u"Ru; st X1 = Ax; + By
u
i=0

DP iteration:

Vi(x) = nli‘n X" Qxi + uiT Rui + Vi1 (Axi + Buy)

We will show:

o V7(x) is quadratic (and therefore V*(x) is)
o V(x) is positive definite (and therefore V*(x) is)

o Optimizer uj(x) is linear
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Bellman Recursion

Assume Vip1(Xis1) = x5 Hiv1xis1 is PSD.
DP iteration:
Vi(xi) = min X" Qxi + uiT Rui + Vig1(Axi + Buy)

= nlin (%" Qxi + u” Ru; + (Ax; + Buy) T Hip1(Ax; + Buy))
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Bellman Recursion
Assume Vip1(Xis1) = x5 Hiv1xis1 is PSD.
DP iteration:

Vi(xi) = ﬁll/” X" Qxi + uiT Ruj + Vi1 (Ax; + Bup)

= nlm (%" Qxi + u” Ru; + (Ax; + Buy) T Hip1(Ax; + Buy))
Setting derivative to zero
2u] R+ 2(Ax; + Buj)"Hi;1B =0
u'(R+B"Hi,1B)= —x"ATH;,1B
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Bellman Recursion
Assume Vip1(Xis1) = x5 Hiv1xis1 is PSD.
DP iteration:
Vi(xi) = ﬁll/” X" Qx; + ui " Ruj 4+ Vii1(Ax + Bu;)
= min (%" Qxi + u” Ru; + (Ax; + Buy) T Hip1(Ax; + Buy))
Setting derivative to zero
2u] R+ 2(Ax; + Buj)"Hi;1B =0
u'(R+B"Hi1B) = —x ATH11B
gives the optimal input as
ur = Kix;i Ki=—(R+B"Hi;1B) 'B"Hi 1A
and the optimal cost
VE(xi) = " (Q + KT RK; + (A+ BK)) " Hiy 1(A + BK))x;
= x;" Hix;
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Dynamic Programming

1. Start at step N and compute
Vi(xn) == mu,lvn xn| Qxy + un " Rupy
= xn | Qxy
Hy = Q
2. lterate backwards for i = N —1...0 (DP iteration)
Vi (x) = ”Li,n T Qx; + u; T Ru; + Vi 1 (Axi + Bu;)

ur(x) = Kix; Ki=—(R+B"H11B) 'BTHi 1A

V*(X,‘) = X,-TH,'X,' H,‘ = Q + K,-TRK,' + (A + BK[)THj+1(A + BK,)

1

3. V*(x0) := V§(x0) and the optimal controller is the optimizer uj(xp)
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Finite-Horizon LQR Solution

Defines the optimal control law:

uy(x) = Kox VE(x) = xT Hox

e We only ever apply the controller u = Kyx in a receding-horizon fashion.
e K;'s are for planning and are not used

e This is a simple, unconstrained, linear quadratic MPC problem

To make this work, we required:

o V*(x) to have a very nice form (quadratic)

e Ability to solve the DP iteration in closed form

This cannot be done for almost any other problem...
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LQR Solution Methods

Two equivalent solution procedures:

Dynamic programming

Pros:
e Leads to elegant closed-form solution for LQR

e Provides a solution when N — oo

Cons:
o Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:
e Can extend to nonlinear, constrained systems with complex cost-functions

Cons:
e Finite-horizon only

e More computationally intense
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Parametric Solution of Finite-Horizon LQR

N

V*(x0) := min ZX,TQX/ +u"Ru; st xjp1 = Ax; + Bu;
u
=0
Writing it out in full gives:
x\ | [Q X1 w\ R 7
X2 Q X2 up R u
min . A o .
u
XN QI \xv U R| \up
- 0 o 0 X1 B 0 0 Up —A
A -0 01 [« 0 B 0| |u 0
0 A - o0 0 2 . L X0
O A _/ XN O S e B Uy O
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Parametric Solution of Finite-Horizon LQR

Simple formulation of the parametric least-squares problem:

V*(x0) :=min x"Qx4+u’Ru st. Ax+ Bu=Cx

Optimal Control of Unconstrained Systems

-
L’/\7/—71]
B 0 0 —A
0 B 0 0
= . C =
0 B 0
=diag(R, ..., R)
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LQR via Optimization

Solve least-squares optimization problem

N u*(xo) 1= argmin x’ Ox +u’ Ru
st. Ax+ Bu = CXO

Jureo
Extract first input in
sequence
U*(Xo) = {Uo, PR UNfl}

Uo

System
xT = Ax+ Bu

l

Implicitly defines a controller k(x) := ug, and for each fixed xo, we can use a
standard constrained least-squares solver to compute it.
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Parametric Solution of Finite-Horizon LQR

Can re-write as a parametric optimization problem in the parameter xg:

V*(x0) :=min x"Qx+u’Ru st. Ax+ Bu=Cx

A is always invertible, so: x = —A"1Bu+ A"Cxy = Fu+ Gxp
=min (Fu+ Gx)" Q(Fu+ Gx) +u’Ru
u

Take derivative and set to zero:
2u"R +2(Fu+ Gx)"QF =0
Solving gives:
Ko
u=~Kxp = P K=—-(R+FTQF)'FTQG
Kn-1

This is a special kind of MPC, where we can write the solution in closed-form.

Explicit MPC lectures will show how to solve for some more general systems
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Comparison of Solution Methods

Dyanmic Programming
e Can compute the infinite-horizon solution
— Infinite-horizon guaranteed to be stabilizing

Optimization
e Can only compute finite-horizon
— May not be stable
e Solution complexity is quadratic in horizon length vs linear for DP

e Concept extends to nonlinear, constrained systems with non-quadratic cost
functions (i.e., MPC)

Both methods compute the same controller! (For a given horizon N < o)

Next : Impact of horizon length and infinite-horizon solutions.
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Example - Impact of Horizon Length

Consider the lightly damped, stable system

w2

T2 + 2¢ws + w?

G(s):

where w =1, ( = 0.01. We sample at 10Hz andset Q =/, R =1.

Discrete-time state-space model: Closed-loop response
1.988 —0.998 0.125 | [z
+ _ N=3
S R T i
/\ N-6
_ X N=7
E_ \ —NiS
S 1\ \/ —N=io
o2l
-0.3
04 50 100 150

Time
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Example: Short horizon N =5
2,

1.5
1r ®

0.5r ’

— 2 1 1 1 1

-3 -2 -1 0 1

Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N =5
2,

1.5f
1,

0.5r

2 -2 -1 0 1 2 3

Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N =5
2,

1.5f
1,

0.5r

2 -2 -1 0 1 2 3

Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N =5
2,

1.5f
1,

0.5r

2 -2 -1 0 1 2 3

Short horizon: Prediction and closed-loop response differ.

Optimal Control of Unconstrained Systems 2-42 Model Predictive Control ME-425



Example: Short horizon N =5
2,

1.5f
1,

0.5r

2 -2 -1 0 1 2 3

Short horizon: Prediction and closed-loop response differ.
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Example: Short horizon N =5
2,
150 =13
1,

0.5r

_2 1 1 1 1 1 |
-3 -2 -1 0 1 2 3

Short horizon: Prediction and closed-loop response differ.
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Example: Long horizon N = 20

2,

1.5¢

1,

-2

-3

Long horizon: Prediction and closed-loop match.

Optimal Control of Unconstrained Systems

-2 -1 0

%1

2-45
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Example: Long horizon N = 20

2,

1.5¢

1,

-2

-3

Long horizon: Prediction and closed-loop match.
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-2 -1 0

%1

2-46
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Example: Long horizon N = 20
2,

1.5 t=19

l,

_2 1 1 1 1 1 |
-3 -2 -1 0 1 2 3
Xl

Long horizon: Prediction and closed-loop match.
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Stability of Finite-Horizon Optimal Control Laws

Consider the system

2

G(s) d

s + 2¢ws + w?

where w = 0.1 and { = —1, which has been discretized at 1r/s.
(Note that this system is unstable)

Is the system x* = (A + BKg n)X
stable?

Where Kr, y is the finite horizon LQR
controller with horizon N and weight R
(@ taken to be the identity)

Horizon N

Blue = stable, white = unstable

200 400 600 800 1000
Weight R
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Infinite-Horizon LQR

Show that the infinite-horizon controller is nominally stable:

o0
V*(x) := min ZXiTQx/ + u] Ru;
Yo
s.t. Xiy1 = Ax; + Bu;

1. System must be controllable
— Have input sequence that generates a bounded cost

2. Finite horizon LQR converges to static solution as N — co

3. Infinite-horizon LQR is nominally stabilizing
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Solving Infinite-Horizon LQR
Consider the DP iteration:

Vi (xi) == min I(x;, ui) + Vi1 (Ax + Bup)

uj
IF V() = Vi (), then V() = Vi, () for all j < .
Therefore, if we can find a function V such that
V*(x) :=min I(x, u) + V*(Ax + Bu)
u

then V*(1) = VZ (4).

This is called the Bellman equation
(The Hamilton-Jacobi-Bellman equation is the continuous time version)
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Solving Infinite-Horizon LQR
Fact: V*(x) is quadratic, V*(x) = x Px for P > 02
Bellman equation:
V(x) = minx” Qx + u Ru+ V(Ax + Bu)
x"Px = muin x"Qx + u" Ru+ (Ax + Bu) T P(Ax + Bu)
minimizing gives u* = —(R + BT PB)~'1BT PAx, giving

xTPx = xTQx + u* T Ru* + (Ax + Bu*)T P(Ax + Bu"*)
xTPx=x"(Q+ATPA— ATPB(R + BT PB)"'BT PA)x

2Reference here
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Infinite-Horizon LQR

This must hold for all x, so P must satisfy the discrete-time algebraic Riccati
equation (DARE)

P=Q+ATPA—ATPB(R+BTPB)"'B"PA
The optimal input is the constant state feedback

u= Kx K=—(R+B"PB)'B"PA
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Lyapunov Function for LQR-Controlled System

Lemma: Lyapunov function for LQR

The optimal value function V*(x) = xTPx is a Lyapunov function for the
system x* = (A + BK)x where K = —(R+ BTPB)"1BT PA and P solves

P=Q+ATPA—ATPB(R+BTPB)"'BTPA

for some Q@ = 0, R > 0.

Lyapunov function

A continuous function V : R” — R, is called a (asymptotic) Lyapunov
function for the system x* = f(x), if

e [X|| = 00 = V(x) = o0

e« V(0)=0 and V(x) >0 V¥x e R"\{0}
e V(f(x)) < V(x) Vx € R"\{0}
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Lyapunov Function for LQR-Controlled System

Lemma: Lyapunov function for LQR

The optimal value function V*(x) = xTPx is a Lyapunov function for the
system x* = (A + BK)x where K = —(R+ BTPB)"1BT PA and P solves

P=Q+ATPA—ATPB(R+BTPB)"'BTPA

for some Q@ = 0, R > 0.

P > 0 gives the first two requirements.

v (Xo) = Xp PXO ZX/ Q+ KTRK)
=0

Consider the value of V*(x;)

V*(x1) = V*((A+ BK)x) Zx, (Q+ KTRK)x
i=1

= V*(x) —x (Q+KTRK)xo < V*(x0)

Optimal Control of Unconstrained Systems 2-54 Model Predictive Control ME-425



Optimal Control: Recap
Goal: Control law to minimize relative ‘energy’ of input and output signals

Why?
o Easy to describe objective / tune controller
e Simple to compute and implement

e Proven and effective

Why infinite-horizon?
e Stable

o Optimal solution (doesn’t usually matter)
In MPC we normally cannot have an infinite horizon because it results in an

infinite number of optimization variables.
Use ‘tricks’ to ‘simulate’ quasi-infinite horizon.
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Outline

3. Summary of Exercise Session
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Exercise Session #1

Consider the discrete-time LTI system defined by

Xit1 = Ax; + Bu; yi = Cx;
with
(4/3 —2/3 1 (23
() () (V)
1
[}
8 o5l 1
o
o
1
= 0
[]
0
=}
g -05¢ .
-1 | | | | | |
0 5 10 15 20 25 30

Time step
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Exercise Session #1

Exercises:

1. Computation of finite-horizon LQR control laws.
(Use either dynamic programming, or least-squares optimization)

2. Investigate relationship between stability and horizon length.
(Plot the predictions, and compare to the closed-loop trajectories.)

3. Compare your finite-horizon controller to Matlab's infinite-horizon one.

You may find slides 2-30, 2-33, 2-34 and 2-36 useful.

The matlab command kron is useful if you choose the least-squares
optimization formulation.
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