Model Predictive Control

Lecture: Optimal Control of Unconstrained Systems

Colin Jones

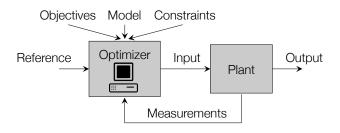
Laboratoire d'Automatique, EPFL

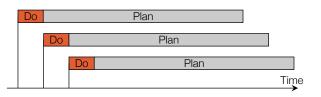
Outline

- 1. Recap
 - Receding Horizon Control
 - Modeling for MPC
 - Lyapunov Functions
- 2. Linear quadratic regulator
 - Computation of LQR Controllers
 - Stability of LQR Controllers

3. Summary of Exercise Session

Receding horizon control





Receding horizon strategy introduces feedback.

Why is This a Good Idea?

All physical systems have **constraints**.

- Physical constraints, e.g. actuator limits
- Performance constraints, e.g. overshoot
- Safety constraints, e.g. temperature/pressure limits

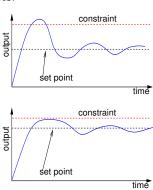
Optimal operating points are often near constraints.

Classical control methods:

- No knowledge of constraints
- Set point sufficiently far from constraints
- Suboptimal plant operation

Predictive control:

- · Constraints included in the design
- Set point optimal
- Efficient plant operation



MPC: Mathematical formulation

$$u^{\star}(x) := \operatorname{argmin} \quad x_N^T Q_f x_N + \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i$$
 s.t.
$$x_0 = x \qquad \text{measurement}$$

$$x_{i+1} = A x_i + B u_i \quad \text{system model}$$

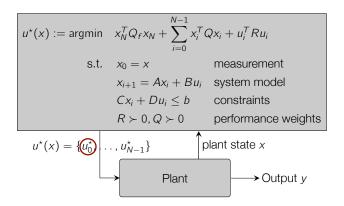
$$C x_i + D u_i \leq b \qquad \text{constraints}$$

$$R \succ 0, Q \succ 0 \qquad \text{performance weights}$$

Problem is defined by

- **Objective** that is minimized, e.g., distance from origin, sum of squared/absolute errors, economic,...
- Internal system model to predict system behavior e.g., linear, nonlinear, single-/multi-variable, ...
- **Constraints** that have to be satisfied e.g., on inputs, outputs, states, linear, quadratic,...

MPC: Mathematical formulation



At each sample time:

- Measure /estimate current state
- Find the optimal input sequence for the entire planning window N
- Implement only the **first** control action

Summary

- Optimize over future possible trajectories of the system to:
 - 1. Satisfy constraints (now and always)
 - 2. Stabilize the system
 - 3. Optimize "performance"

In that order!

- Re-optimizing when new measurements are obtained introduces feedback
 - The model is wrong
 - Unknown disturbances will act in the future

Modeling for MPC: Review

Models in MPC are (usually): Discrete-time, time invariant, state-space and

Nonlinear $x^+ = f(x, u)$ y = h(x, u)Linear $x^+ = Ax + Bu$ y = Cx + Du

Notes:

- Assume state-measurement \Rightarrow often drop the y = h(x, u).
- Old MPC approaches were based on step response models. Still common in industry, but theoretically a very bad idea.
- Frequency concepts (Bode, Nyquist, Laplace, etc) and controllers based on these (\mathcal{H}_{∞} , lead/lag filters, etc) are not used in MPC because **constraints** make all systems nonlinear.
- Throughout the course, we will assume a discrete-time, state-space model provided

Lyapunov Functions

Idea: System is stable, if total 'energy' is decreasing over time. Lyapunov function is a system theoretic generalization of 'energy'.

Lyapunov function

A continuous¹ function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called a (asymptotic) **Lyapunov** function for the system $x^+ = f(x)$, if

- $||x|| \to \infty \Rightarrow V(x) \to \infty$
- V(0) = 0 and $V(x) > 0 \ \forall x \in \mathbb{R}^n \setminus \{0\}$
- $V(f(x)) < V(x) \ \forall x \in \mathbb{R}^n \setminus \{0\}$

We will often speak of a local Lyapunov function, in which these conditions need only be satisfied in some region $x \in \mathcal{X}$.

 $^{^{1}}$ This assumption can be relaxed by requiring an additional state dependent upper bound on V(x) [Rawlings & Mayne, 2009].

Lyapunov Functions for Stability

Theorem: Global Lyapunov Stability

If a system admits a (asymptotic) Lyapunov function, then the equilibrium point at the origin is **asymptotically stable**.

Rough sketch of proof.

Consider a system $x^+ = f(x)$ with Lyapunov function V and initial state x_0 .

The resulting state sequence $\{x_0, x_1, x_2, ...\}$ will have an associated sequence $\{V(x_0), V(x_1), V(x_2), ...\}$ which is:

- positive
- · monotonically decreasing

Since the only point where V(x) = 0 is x = 0, we have that in the limit $V(x_i)$ tends to zero, and therefore x_i tends to the origin.

Remarks on Lyapunov functions

- Finding a Lyapunov function (and proving that it is one!) is the challenge
- Find Lyapunov function for optimization-based controller??? No idea?!
- MPC: setup the problem so that the **optimal value of the cost function is always a Lyapunov function** by design.
 - Will see a simple version of this today with LQR
- Stable linear systems: $V(x) = x^T P x$ is always a Lyapunov function Find P by solving the Lyapunov equation for some Q > 0

$$A^T PA - P = -Q$$

Matlab: P = dlyap(A,Q); Solves discrete-time Lyapunov equation

Outline

- 1. Recap
 - Receding Horizon Control
 - Modeling for MPC
 - Lyapunov Functions

- 2. Linear quadratic regulator
 - Computation of LQR Controllers
 - Stability of LQR Controllers
- 3. Summary of Exercise Session

Linear Quadratic Regulator

$$x^+ = Ax + Bu$$

Goal: Move from state x to the origin. (i.e., keep x 'small')

Consider N inputs into the future

$$\mathbf{u} := \{u_0, \ldots, u_{N-1}\}$$

Express the 'cost' of being in state x and applying input u with the function

$$I(x, u) := x^T Q x + u^T R u$$

Cost of following a trajectory:

$$V(\mathbf{x}_0, \mathbf{u}) = \sum_{i=0}^{N} \mathbf{x}_i^T Q \mathbf{x}_i + \mathbf{u}_i^T R \mathbf{u}_i$$

Assume: $R \succ 0$, $Q \succeq 0$. Real, symmetric and positive (semi)definite.

Motivation for LQR

Consider the system:

$$x^+ = Ax + Bu y = Cx$$

and set $Q = C^T C$, $R = \rho I$. Minimize the cost

$$\sum_{i=0}^{N} \|y_i\|_2^2 + \rho \|u_i\|_2^2$$

We're minimizing the **energy** in the input and output signals.

Large $\rho \Rightarrow$ small input energy, output weakly controlled Small $\rho \Rightarrow$ large input energy, output strongly controlled

Motivation for LQR

Consider the system:

$$x^+ = Ax + Bu$$
 $y = Cx$

and set $Q = C^T C$, $R = \rho I$. Minimize the cost

$$\sum_{i=0}^{N} \|y_i\|_2^2 + \rho \|u_i\|_2^2$$

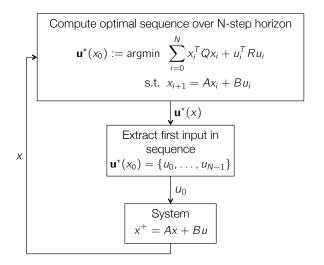
We're minimizing the **energy** in the input and output signals.

Large $\rho \Rightarrow$ small input energy, output weakly controlled Small $\rho \Rightarrow$ large input energy, output strongly controlled

Real motivation

- Works well in practice
- We can solve it (very common motivation in control!)
- Solution is simple, and easy to implement in embedded controller

Receding Horizon Control



For unconstrained systems, this is a **constant linear controller** However, can extend this concept to much more complex systems (MPC)

LQR Solution Methods

Two equivalent solution procedures:

Dynamic programming

Pros:

- Leads to elegant closed-form solution for LQR
- Provides a solution when $N \to \infty$

Cons:

• Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:

• Can extend to nonlinear, constrained systems with complex cost-functions

Cons:

- Finite-horizon only
- More computationally intense

$$V^{\star}(x_0) := \min_{\mathbf{u}} \sum_{k=0}^{N} I(x_k, u_k)$$
 s.t. $x_{k+1} = Ax_k + Bu_k$

Consider problem with N = 2:

$$V^{*}(x_{0}) = \min_{u_{0}, u_{1}, u_{2}} I(x_{0}, u_{0}) + I(x_{1}, u_{1}) + I(x_{2}, u_{2})$$
s.t. $x_{1} = Ax_{0} + Bu_{0}$

$$x_{2} = Ax_{1} + Bu_{1}$$

$$V^*(x_0) := \min_{\mathbf{u}} \sum_{k=0}^{N} I(x_k, u_k)$$
 s.t. $x_{k+1} = Ax_k + Bu_k$

Consider problem with N = 2:

Fix
$$x_2$$
 and this is a function only of u_2

$$V^{*}(x_{0}) = \min_{u_{0}, u_{1}, u_{2}} I(x_{0}, u_{0}) + I(x_{1}, u_{1}) + I(x_{2}, u_{2})$$
s.t. $x_{1} = Ax_{0} + Bu_{0}$

$$x_{2} = Ax_{1} + Bu_{1}$$

$$V^*(x_0) := \min_{\mathbf{u}} \sum_{k=0}^{N} I(x_k, u_k)$$
 s.t. $x_{k+1} = Ax_k + Bu_k$

Consider problem with N = 2:

Fix x_2 and this is a function only of u_2

$$V^{*}(x_{0}) = \min_{u_{0}, u_{1}, u_{2}} I(x_{0}, u_{0}) + I(x_{1}, u_{1}) + I(x_{2}, u_{2})$$
s.t. $x_{1} = Ax_{0} + Bu_{0}$

$$x_{2} = Ax_{1} + Bu_{1}$$

$$= \min_{u_{0}, u_{1}} I(x_{0}, u_{0}) + I(x_{1}, u_{1}) + V_{2}^{*}(Ax_{1} + Bu_{1})$$
s.t. $x_{1} = Ax_{0} + Bu_{0}$

where:

$$V_2^{\star}(x_2) := \min_{u_2} I(x_2, u_2)$$

$$V^{*}(x_{0}) = \min_{u_{0}, u_{1}} I(x_{0}, u_{0}) + I(x_{1}, u_{1}) + V_{2}^{*}(Ax_{1} + Bu_{1})$$

s.t. $x_{1} = Ax_{0} + Bu_{0}$

$$V^{*}(x_{0}) = \min_{u_{0}, u_{1}} I(x_{0}, u_{0}) + \overbrace{I(x_{1}, u_{1}) + V_{2}^{*}(Ax_{1} + Bu_{1})}^{\text{Fix } x_{1} \text{ and this is a function only of } u_{1}}$$
s.t. $x_{1} = Ax_{0} + Bu_{0}$

 $V^{*}(x_{0}) = \min_{u_{0}, u_{1}} I(x_{0}, u_{0}) + \overbrace{I(x_{1}, u_{1}) + V_{2}^{*}(Ax_{1} + Bu_{1})}^{\text{a function only of } u_{1}}$ s.t. $x_{1} = Ax_{0} + Bu_{0}$ $= \min_{u_{0}} I(x_{0}, u_{0}) + V_{1}^{*}(Ax_{0} + Bu_{0})$

Fix x_1 and this is

where:

$$V_1^{\star}(x_1) := \min_{u_1} \ I(x_1, u_1) + V_2^{\star}(Ax_1 + Bu_1)$$

 $V^{*}(x_{0}) = \min_{u_{0}, u_{1}} I(x_{0}, u_{0}) + \overbrace{I(x_{1}, u_{1}) + V_{2}^{*}(Ax_{1} + Bu_{1})}^{\text{a function only of } u_{1}}$ $\text{s.t. } x_{1} = Ax_{0} + Bu_{0}$ $= \min_{u_{0}} I(x_{0}, u_{0}) + V_{1}^{*}(Ax_{0} + Bu_{0})$

Fix x_1 and this is

where:

$$V_1^{\star}(x_1) := \min_{u_1} I(x_1, u_1) + V_2^{\star}(Ax_1 + Bu_1)$$

Finally only u_0 to minimize:

$$V^{\star}(x_0) = \min_{u_0} \ I(x_0, u_0) + V_1^{\star}(Ax_0 + Bu_0)$$

The value that minimizes this function $u_0^*(x_0)$ is our control input.

Dynamic Programming

Procedure:

1. Start at step N and compute

$$V_N^{\star}(x_N) := \min_{u_N} \ I(x_N, u_N)$$

2. Iterate backwards for i = N - 1...0 (DP iteration)

$$V_i^{\star}(x_i) := \min_{u_i} \ I(x_i, u_i) + V_{i+1}^{\star}(Ax_i + Bu_i)$$

3. $V^*(x_0) := V_0^*(x_0)$ and the optimal controller is the optimizer $u_0^*(x_0)$

Requirements:

- Closed-form representation of the function $V_i^*(x)$
- Ability to compute a DP iteration

Normally impossible. Some special cases (e.g., LQR).

DP Solution of LQR

$$V^*(x_0) := \min_{\mathbf{u}} \sum_{i=0}^{N} x_i^T Q x_i + u_i^T R u_i \quad \text{s.t.} \quad x_{i+1} = A x_i + B u_i$$

DP iteration:

$$V_i^*(x_i) = \min_{u_i} x_i^T Q x_i + u_i^T R u_i + V_{i+1}^* (A x_i + B u_i)$$

for i = N - 1, ..., 0.

We will show:

- $V_i^*(x)$ is quadratic (and therefore $V^*(x)$ is)
- $V_i^*(x)$ is positive definite (and therefore $V^*(x)$ is)
- Optimizer $u_0^*(x)$ is linear

Bellman Recursion

Assume $V_{i+1}(x_{i+1}) = x_{i+1}^T H_{i+1} x_{i+1}$ is PSD.

DP iteration:

$$V_{i}(x_{i}) = \min_{u_{i}} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + V_{i+1} (A x_{i} + B u_{i})$$

$$= \min_{u_{i}} (x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + (A x_{i} + B u_{i})^{T} H_{i+1} (A x_{i} + B u_{i}))$$

Bellman Recursion

Assume $V_{i+1}(x_{i+1}) = x_{i+1}^T H_{i+1} x_{i+1}$ is PSD.

DP iteration:

$$V_{i}(x_{i}) = \min_{u_{i}} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + V_{i+1} (A x_{i} + B u_{i})$$

$$= \min_{u_{i}} (x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + (A x_{i} + B u_{i})^{T} H_{i+1} (A x_{i} + B u_{i}))$$

Setting derivative to zero

$$2u_i^T R + 2(Ax_i + Bu_i)^T H_{i+1} B = 0$$

$$u_i^T (R + B^T H_{i+1} B) = -x_i^T A^T H_{i+1} B$$

Bellman Recursion

Assume $V_{i+1}(x_{i+1}) = x_{i+1}^T H_{i+1} x_{i+1}$ is PSD.

DP iteration:

$$V_{i}(x_{i}) = \min_{u_{i}} x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + V_{i+1} (A x_{i} + B u_{i})$$

$$= \min_{u_{i}} (x_{i}^{T} Q x_{i} + u_{i}^{T} R u_{i} + (A x_{i} + B u_{i})^{T} H_{i+1} (A x_{i} + B u_{i}))$$

Setting derivative to zero

$$2u_i^T R + 2(Ax_i + Bu_i)^T H_{i+1} B = 0$$

$$u_i^T (R + B^T H_{i+1} B) = -x_i^T A^T H_{i+1} B$$

gives the optimal input as

$$u_i^* = K_i x_i$$
 $K_i = -(R + B^T H_{i+1} B)^{-1} B^T H_{i+1} A$

and the optimal cost

$$V_{i}^{\star}(x_{i}) = x_{i}^{T}(Q + K_{i}^{T}RK_{i} + (A + BK_{i})^{T}H_{i+1}(A + BK_{i}))x_{i}$$

= $x_{i}^{T}H_{i}x_{i}$

Dynamic Programming

1. Start at step N and compute

$$V_N^*(x_N) := \min_{u_N} x_N^T Q x_N + u_N^T R u_N$$
$$= x_N^T Q x_N$$
$$H_N := Q$$

2. Iterate backwards for $i = N - 1 \dots 0$ (DP iteration)

$$V_i^{\star}(x_i) := \min_{u_i} x_i^T Q x_i + u_i^T R u_i + V_{i+1}^{\star} (A x_i + B u_i)$$

$$u_i^*(x_i) = K_i x_i K_i = -(R + B^T H_{i+1} B)^{-1} B^T H_{i+1} A$$

$$V_i^*(x_i) = x_i^T H_i x_i H_i := Q + K_i^T R K_i + (A + B K_i)^T H_{i+1} (A + B K_i)$$

3. $V^*(x_0) := V_0^*(x_0)$ and the optimal controller is the optimizer $u_0^*(x_0)$

Finite-Horizon LQR Solution

Defines the optimal control law:

$$u_0^*(x) = K_0 x$$
 $V_0^*(x) = x^T H_0 x$

- We only ever apply the controller $u = K_0 x$ in a **receding-horizon fashion**.
- K_i 's are for **planning** and are not used
- This is a simple, unconstrained, linear guadratic MPC problem

To make this work, we required:

- $V_i^*(x)$ to have a **very** nice form (quadratic)
- · Ability to solve the DP iteration in closed form

This cannot be done for almost any other problem...

LQR Solution Methods

Two equivalent solution procedures:

Dynamic programming

Pros:

- Leads to elegant closed-form solution for LQR
- Provides a solution when $N \to \infty$

Cons:

• Virtually no problems have simple, closed-form solutions (except LQR)

Optimization / Least-squares

Pros:

• Can extend to nonlinear, constrained systems with complex cost-functions

Cons:

- Finite-horizon only
- More computationally intense

Parametric Solution of Finite-Horizon LQR

$$V^{\star}(x_0) := \min_{\mathbf{u}} \sum_{i=0}^{N} x_i^T Q x_i + u_i^T R u_i \quad \text{s.t. } x_{i+1} = A x_i + B u_i$$

Writing it out in full gives:

$$\min_{\mathbf{u}} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} \cdot \begin{bmatrix} Q \\ Q \\ & \ddots \\ & Q \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_N \end{pmatrix} \cdot \begin{bmatrix} R \\ & R \\ & \ddots \\ & R \end{bmatrix} \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_N \end{pmatrix}$$

$$\begin{bmatrix} -I & 0 & \cdots & \cdots & \cdots & 0 \\ A & -I & 0 & \cdots & \cdots & 0 \\ 0 & A & -I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & A & -I \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + \begin{bmatrix} B & 0 & \cdots & 0 \\ 0 & B & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & B \end{bmatrix} \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_N \end{pmatrix} = \begin{bmatrix} -A \\ 0 \\ \vdots \\ 0 \end{bmatrix} x_0$$

Parametric Solution of Finite-Horizon LQR

Simple formulation of the parametric least-squares problem:

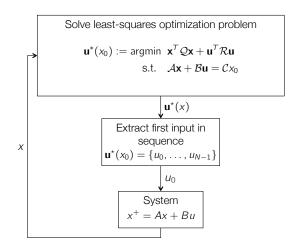
$$V^*(x_0) := \min_{\mathbf{u}} \mathbf{x}^T \mathcal{Q} \mathbf{x} + \mathbf{u}^T \mathcal{R} \mathbf{u}$$
 s.t. $\mathcal{A} \mathbf{x} + \mathcal{B} \mathbf{u} = \mathcal{C} x_0$

where
$$\mathbf{x} = \begin{bmatrix} x_1^T & \cdots & x_N^T \end{bmatrix}^T$$
, $\mathbf{u} = \begin{bmatrix} u_0^T & \cdots & u_{N-1}^T \end{bmatrix}^T$,
$$A := \begin{bmatrix} -I & 0 & \cdots & \cdots & 0 \\ A & -I & 0 & \cdots & \cdots & 0 \\ 0 & A & -I & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & A & -I \end{bmatrix} \quad \mathcal{B} := \begin{bmatrix} B & 0 & \cdots & 0 \\ 0 & B & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & B \end{bmatrix} \quad \mathcal{C} := \begin{bmatrix} -A \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $Q := diag(Q, \ldots, Q)$

 $\mathcal{R} := \operatorname{diag}(R, \ldots, R)$

LQR via Optimization



Implicitly defines a controller $\kappa(x) := \mathbf{u}_0^*$, and for each fixed x_0 , we can use a standard constrained least-squares solver to compute it.

Parametric Solution of Finite-Horizon LQR

Can re-write as a **parametric optimization problem** in the parameter x_0 :

$$V^{\star}(x_0) := \min_{\mathbf{u}} \ \mathbf{x}^{T} \mathcal{Q} \mathbf{x} + \mathbf{u}^{T} \mathcal{R} \mathbf{u}$$
 s.t. $\mathcal{A} \mathbf{x} + \mathcal{B} \mathbf{u} = \mathcal{C} x_0$

 \mathcal{A} is always invertible, so: $\mathbf{x} = -\mathcal{A}^{-1}\mathcal{B}\mathbf{u} + \mathcal{A}^{-1}\mathcal{C}x_0 = F\mathbf{u} + Gx_0$

$$= \min_{\mathbf{u}} (F\mathbf{u} + Gx_0)^T \mathcal{Q}(F\mathbf{u} + Gx_0) + \mathbf{u}^T \mathcal{R}\mathbf{u}$$

Take derivative and set to zero:

$$2\mathbf{u}^{\mathsf{T}}\mathcal{R} + 2(F\mathbf{u} + Gx_0)^{\mathsf{T}}\mathcal{Q}F = 0$$

Solving gives:

$$\mathbf{u} = \mathcal{K} x_0 = \begin{bmatrix} K_0 \\ \vdots \\ K_{N-1} \end{bmatrix} x_0 \qquad \qquad \mathcal{K} = -(\mathcal{R} + F^T \mathcal{Q} F)^{-1} F^T \mathcal{Q} G$$

This is a special kind of MPC, where we can write the solution in **closed-form**.

Explicit MPC lectures will show how to solve for some more general systems

Comparison of Solution Methods

Dyanmic Programming

- Can compute the infinite-horizon solution
 - Infinite-horizon guaranteed to be stabilizing

Optimization

- Can only compute finite-horizon
 - May not be stable
- Solution complexity is quadratic in horizon length vs linear for DP
- Concept extends to nonlinear, constrained systems with non-quadratic cost functions (i.e., MPC)

Both methods compute the same controller! (For a given horizon $N < \infty$)

Next: Impact of horizon length and infinite-horizon solutions.

Example - Impact of Horizon Length

Consider the lightly damped, stable system

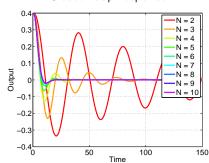
$$G(s) := \frac{\omega^2}{s^2 + 2\zeta \omega s + \omega^2}$$

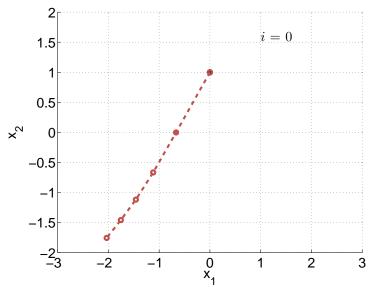
where $\omega = 1$, $\zeta = 0.01$. We sample at 10Hz and set Q = I, R = 1.

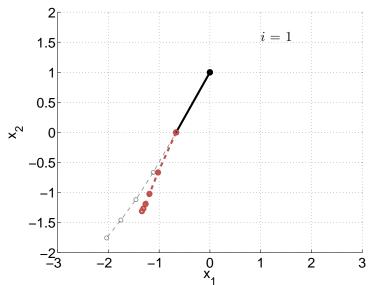
Discrete-time state-space model:

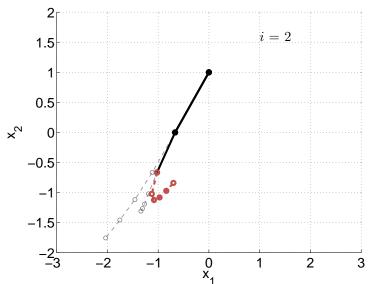
$$x^{+} = \begin{bmatrix} 1.988 & -0.998 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 0.125 \\ 0 \end{bmatrix} u$$

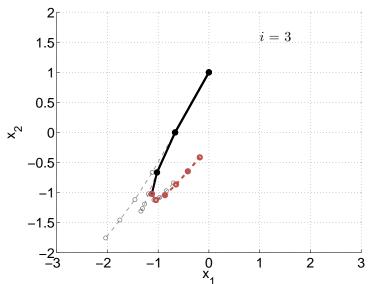
Closed-loop response

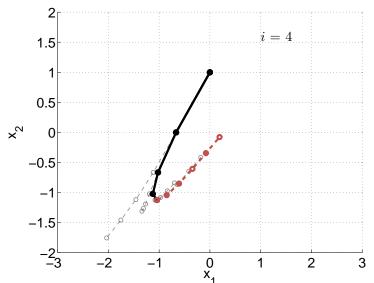


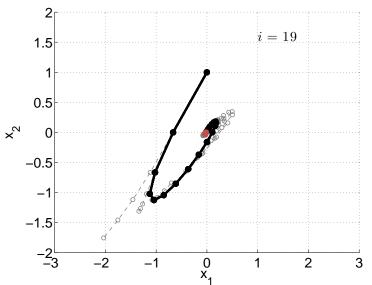




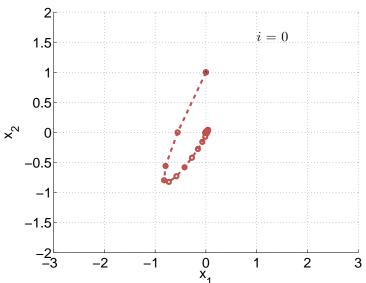






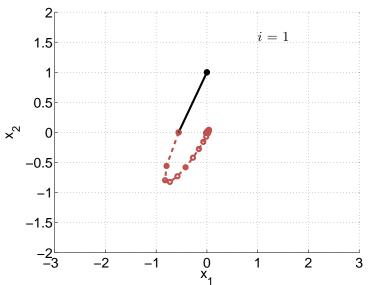


Example: Long horizon N = 20



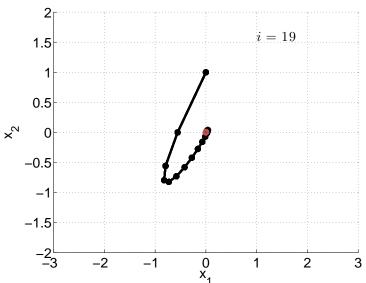
Long horizon: Prediction and closed-loop match.

Example: Long horizon N = 20



Long horizon: Prediction and closed-loop match.

Example: Long horizon N = 20



Long horizon: Prediction and closed-loop match.

Stability of Finite-Horizon Optimal Control Laws

Consider the system

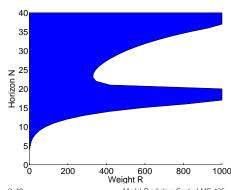
$$G(s) = \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}$$

where $\omega=0.1$ and $\zeta=-1$, which has been discretized at 1r/s. (Note that this system is unstable)

Is the system $x^+ = (A + BK_{R,N})x$ stable?

Where $K_{R,N}$ is the finite horizon LQR controller with horizon N and weight R (Q taken to be the identity)

Blue = stable, white = unstable



Infinite-Horizon LQR

Show that the infinite-horizon controller is nominally stable:

$$V^{\star}(x) := \min_{\mathbf{u}} \sum_{i=0}^{\infty} x_i^T Q x_i + u_i^T R u_i$$

s.t. $x_{i+1} = A x_i + B u_i$

- 1. System must be **controllable**
 - Have input sequence that generates a **bounded** cost
- 2. Finite horizon LQR converges to static solution as $N \to \infty$
- 3. Infinite-horizon LQR is nominally stabilizing

Solving Infinite-Horizon LQR

Consider the DP iteration:

$$V_i^{\star}(x_i) := \min_{u_i} \ I(x_i, u_i) + V_{i+1}^{\star}(Ax_i + Bu_i)$$

If
$$V_i^{\star}(\cdot) = V_{i+1}^{\star}(\cdot)$$
, then $V_i^{\star}(\cdot) = V_{i+1}^{\star}(\cdot)$ for all $j \leq i$.

Therefore, if we can find a function V such that

$$V^{\star}(x) := \min_{u} \ I(x, u) + V^{\star}(Ax + Bu)$$

then
$$V^*(\cdot) = V^*_{\infty}(\cdot)$$
.

This is called the Bellman equation (The Hamilton-Jacobi-Bellman equation is the continuous time version)

Solving Infinite-Horizon LQR

Fact: $V^*(x)$ is quadratic, $V^*(x) = x^T P x$ for $P > 0^2$

Bellman equation:

$$V(x) = \min_{u} x^{T} Qx + u^{T} Ru + V(Ax + Bu)$$
$$x^{T} Px = \min_{u} x^{T} Qx + u^{T} Ru + (Ax + Bu)^{T} P(Ax + Bu)$$

minimizing gives $u^* = -(R + B^T P B)^{-1} B^T P A x$, giving

$$x^{T}Px = x^{T}Qx + u^{*T}Ru^{*} + (Ax + Bu^{*})^{T}P(Ax + Bu^{*})$$

 $x^{T}Px = x^{T}(Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA)x$

²Reference here

Infinite-Horizon LQR

This must hold for all x, so P must satisfy the discrete-time algebraic Riccati equation (DARE)

$$P = Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA$$

The optimal input is the constant state feedback

$$u = Kx$$
 $K = -(R + B^T PB)^{-1}B^T PA$

Lyapunov Function for LQR-Controlled System

Lemma: Lyapunov function for LQR

The optimal value function $V^*(x) = x^T P x$ is a Lyapunov function for the system $x^+ = (A + BK)x$ where $K = -(R + B^T P B)^{-1}B^T P A$ and P solves

$$P = Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA$$

for some $Q \succeq 0$, $R \succ 0$.

Lyapunov function

A continuous function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called a (asymptotic) **Lyapunov** function for the system $x^+ = f(x)$, if

- $||x|| \to \infty \Rightarrow V(x) \to \infty$
- V(0) = 0 and $V(x) > 0 \ \forall x \in \mathbb{R}^n \setminus \{0\}$
- $V(f(x)) < V(x) \ \forall x \in \mathbb{R}^n \setminus \{0\}$

Lyapunov Function for LQR-Controlled System

Lemma: Lyapunov function for LQR

The optimal value function $V^*(x) = x^T P x$ is a Lyapunov function for the system $x^+ = (A + BK)x$ where $K = -(R + B^T P B)^{-1}B^T P A$ and P solves

$$P = Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA$$

for some $Q \succeq 0$, $R \succ 0$.

 $P \succ 0$ gives the first two requirements.

$$V^{\star}(x_0) = x_0^T P x_0 = \sum_{i=0}^{\infty} x_i^T (Q + K^T R K) x_i$$

Consider the value of $V^*(x_1)$

$$V^{*}(x_{1}) = V^{*}((A + BK)x_{0}) = \sum_{i=1}^{\infty} x_{i}^{T}(Q + K^{T}RK)x_{i}$$
$$= V^{*}(x_{0}) - x_{0}^{T}(Q + K^{T}RK)x_{0} < V^{*}(x_{0})$$

Optimal Control: Recap

Goal: Control law to minimize relative 'energy' of input and output signals

Why?

- Easy to describe objective / tune controller
- Simple to compute and implement
- Proven and effective

Why infinite-horizon?

- Stable
- Optimal solution (doesn't usually matter)

In MPC we normally cannot have an infinite horizon because it results in an infinite number of optimization variables.

Use 'tricks' to 'simulate' quasi-infinite horizon.

Outline

- 1. Recap
 - Receding Horizon Control
 - Modeling for MPC
 - Lyapunov Functions
- 2. Linear quadratic regulator
 - Computation of LQR Controllers
 - Stability of LQR Controllers
- 3. Summary of Exercise Session

Exercise Session #1

Consider the discrete-time LTI system defined by

$$x_{i+1} = Ax_i + Bu_i$$

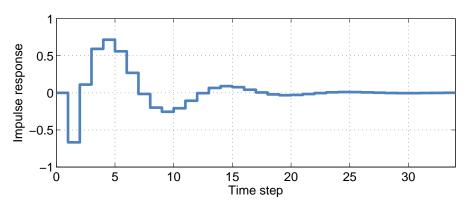
$$y_i = Cx_i$$

with

$$A = \begin{pmatrix} 4/3 & -2/3 \\ 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$C = \begin{pmatrix} -2/3 \\ 1 \end{pmatrix}$$



Exercise Session #1

Exercises:

- Computation of finite-horizon LQR control laws.
 (Use either dynamic programming, or least-squares optimization)
- 2. Investigate relationship between stability and horizon length. (Plot the predictions, and compare to the closed-loop trajectories.)
- 3. Compare your finite-horizon controller to Matlab's infinite-horizon one.

You may find slides 2-30, 2-33, 2-34 and 2-36 useful.

The matlab command kron is useful if you choose the least-squares optimization formulation.